Metamath Proof Explorer


Theorem eqneqall

Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018)

Ref Expression
Assertion eqneqall A=BABφ

Proof

Step Hyp Ref Expression
1 df-ne AB¬A=B
2 pm2.24 A=B¬A=Bφ
3 1 2 biimtrid A=BABφ