| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opthhausdorff.a |
⊢ 𝐴 ∈ V |
| 2 |
|
opthhausdorff.b |
⊢ 𝐵 ∈ V |
| 3 |
|
opthhausdorff.o |
⊢ 𝐴 ≠ 𝑂 |
| 4 |
|
opthhausdorff.n |
⊢ 𝐵 ≠ 𝑂 |
| 5 |
|
opthhausdorff.t |
⊢ 𝐵 ≠ 𝑇 |
| 6 |
|
opthhausdorff.1 |
⊢ 𝑂 ∈ V |
| 7 |
|
opthhausdorff.2 |
⊢ 𝑇 ∈ V |
| 8 |
|
opthhausdorff.3 |
⊢ 𝑂 ≠ 𝑇 |
| 9 |
|
prex |
⊢ { 𝐴 , 𝑂 } ∈ V |
| 10 |
|
prex |
⊢ { 𝐵 , 𝑇 } ∈ V |
| 11 |
1 6
|
pm3.2i |
⊢ ( 𝐴 ∈ V ∧ 𝑂 ∈ V ) |
| 12 |
2 7
|
pm3.2i |
⊢ ( 𝐵 ∈ V ∧ 𝑇 ∈ V ) |
| 13 |
11 12
|
pm3.2i |
⊢ ( ( 𝐴 ∈ V ∧ 𝑂 ∈ V ) ∧ ( 𝐵 ∈ V ∧ 𝑇 ∈ V ) ) |
| 14 |
4
|
necomi |
⊢ 𝑂 ≠ 𝐵 |
| 15 |
14 8
|
pm3.2i |
⊢ ( 𝑂 ≠ 𝐵 ∧ 𝑂 ≠ 𝑇 ) |
| 16 |
15
|
olci |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝑇 ) ∨ ( 𝑂 ≠ 𝐵 ∧ 𝑂 ≠ 𝑇 ) ) |
| 17 |
|
prneimg |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝑂 ∈ V ) ∧ ( 𝐵 ∈ V ∧ 𝑇 ∈ V ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝑇 ) ∨ ( 𝑂 ≠ 𝐵 ∧ 𝑂 ≠ 𝑇 ) ) → { 𝐴 , 𝑂 } ≠ { 𝐵 , 𝑇 } ) ) |
| 18 |
13 16 17
|
mp2 |
⊢ { 𝐴 , 𝑂 } ≠ { 𝐵 , 𝑇 } |
| 19 |
|
preq12nebg |
⊢ ( ( { 𝐴 , 𝑂 } ∈ V ∧ { 𝐵 , 𝑇 } ∈ V ∧ { 𝐴 , 𝑂 } ≠ { 𝐵 , 𝑇 } ) → ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ↔ ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) ∨ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) ) ) ) |
| 20 |
9 10 18 19
|
mp3an |
⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ↔ ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) ∨ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) ) ) |
| 21 |
|
preq12nebg |
⊢ ( ( 𝐴 ∈ V ∧ 𝑂 ∈ V ∧ 𝐴 ≠ 𝑂 ) → ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝑂 = 𝑂 ) ∨ ( 𝐴 = 𝑂 ∧ 𝑂 = 𝐶 ) ) ) ) |
| 22 |
1 6 3 21
|
mp3an |
⊢ ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝑂 = 𝑂 ) ∨ ( 𝐴 = 𝑂 ∧ 𝑂 = 𝐶 ) ) ) |
| 23 |
|
preq12nebg |
⊢ ( ( 𝐵 ∈ V ∧ 𝑇 ∈ V ∧ 𝐵 ≠ 𝑇 ) → ( { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ↔ ( ( 𝐵 = 𝐷 ∧ 𝑇 = 𝑇 ) ∨ ( 𝐵 = 𝑇 ∧ 𝑇 = 𝐷 ) ) ) ) |
| 24 |
2 7 5 23
|
mp3an |
⊢ ( { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ↔ ( ( 𝐵 = 𝐷 ∧ 𝑇 = 𝑇 ) ∨ ( 𝐵 = 𝑇 ∧ 𝑇 = 𝐷 ) ) ) |
| 25 |
|
simpl |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝑂 = 𝑂 ) → 𝐴 = 𝐶 ) |
| 26 |
|
simpl |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝑇 = 𝑇 ) → 𝐵 = 𝐷 ) |
| 27 |
25 26
|
anim12i |
⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝑂 = 𝑂 ) ∧ ( 𝐵 = 𝐷 ∧ 𝑇 = 𝑇 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 28 |
|
eqneqall |
⊢ ( 𝐴 = 𝑂 → ( 𝐴 ≠ 𝑂 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 29 |
3 28
|
mpi |
⊢ ( 𝐴 = 𝑂 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝐴 = 𝑂 ∧ 𝑂 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 31 |
|
eqneqall |
⊢ ( 𝐵 = 𝑇 → ( 𝐵 ≠ 𝑇 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 32 |
5 31
|
mpi |
⊢ ( 𝐵 = 𝑇 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐵 = 𝑇 ∧ 𝑇 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 34 |
27 30 33
|
ccase2 |
⊢ ( ( ( ( 𝐴 = 𝐶 ∧ 𝑂 = 𝑂 ) ∨ ( 𝐴 = 𝑂 ∧ 𝑂 = 𝐶 ) ) ∧ ( ( 𝐵 = 𝐷 ∧ 𝑇 = 𝑇 ) ∨ ( 𝐵 = 𝑇 ∧ 𝑇 = 𝐷 ) ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 35 |
22 24 34
|
syl2anb |
⊢ ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 36 |
|
preq12nebg |
⊢ ( ( 𝐴 ∈ V ∧ 𝑂 ∈ V ∧ 𝐴 ≠ 𝑂 ) → ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ↔ ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) ∨ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) ) ) |
| 37 |
1 6 3 36
|
mp3an |
⊢ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ↔ ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) ∨ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) ) |
| 38 |
|
preq12nebg |
⊢ ( ( 𝐵 ∈ V ∧ 𝑇 ∈ V ∧ 𝐵 ≠ 𝑇 ) → ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ↔ ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) ) ) |
| 39 |
2 7 5 38
|
mp3an |
⊢ ( { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ↔ ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) ) |
| 40 |
|
eqneqall |
⊢ ( 𝑂 = 𝑇 → ( 𝑂 ≠ 𝑇 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 41 |
8 40
|
mpi |
⊢ ( 𝑂 = 𝑇 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 43 |
42
|
a1d |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) → ( ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 44 |
8
|
necomi |
⊢ 𝑇 ≠ 𝑂 |
| 45 |
|
eqneqall |
⊢ ( 𝑇 = 𝑂 → ( 𝑇 ≠ 𝑂 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 46 |
44 45
|
mpi |
⊢ ( 𝑇 = 𝑂 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 48 |
47
|
a1d |
⊢ ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 49 |
|
eqneqall |
⊢ ( 𝐵 = 𝑂 → ( 𝐵 ≠ 𝑂 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 50 |
4 49
|
mpi |
⊢ ( 𝐵 = 𝑂 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 52 |
51
|
a1d |
⊢ ( ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 53 |
48 52
|
jaoi |
⊢ ( ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) → ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 54 |
53
|
com12 |
⊢ ( ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) → ( ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 55 |
43 54
|
jaoi |
⊢ ( ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) ∨ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) → ( ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 56 |
55
|
imp |
⊢ ( ( ( ( 𝐴 = 𝐷 ∧ 𝑂 = 𝑇 ) ∨ ( 𝐴 = 𝑇 ∧ 𝑂 = 𝐷 ) ) ∧ ( ( 𝐵 = 𝐶 ∧ 𝑇 = 𝑂 ) ∨ ( 𝐵 = 𝑂 ∧ 𝑇 = 𝐶 ) ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 57 |
37 39 56
|
syl2anb |
⊢ ( ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 58 |
35 57
|
jaoi |
⊢ ( ( ( { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ∧ { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) ∨ ( { 𝐴 , 𝑂 } = { 𝐷 , 𝑇 } ∧ { 𝐵 , 𝑇 } = { 𝐶 , 𝑂 } ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 59 |
20 58
|
sylbi |
⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 60 |
|
preq1 |
⊢ ( 𝐴 = 𝐶 → { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝑂 } = { 𝐶 , 𝑂 } ) |
| 62 |
|
preq1 |
⊢ ( 𝐵 = 𝐷 → { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐵 , 𝑇 } = { 𝐷 , 𝑇 } ) |
| 64 |
61 63
|
preq12d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ) |
| 65 |
59 64
|
impbii |
⊢ ( { { 𝐴 , 𝑂 } , { 𝐵 , 𝑇 } } = { { 𝐶 , 𝑂 } , { 𝐷 , 𝑇 } } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |