Metamath Proof Explorer


Theorem fsuppco

Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019)

Ref Expression
Hypotheses fsuppco.f φ finSupp Z F
fsuppco.g φ G : X 1-1 Y
fsuppco.z φ Z W
fsuppco.v φ F V
Assertion fsuppco φ finSupp Z F G

Proof

Step Hyp Ref Expression
1 fsuppco.f φ finSupp Z F
2 fsuppco.g φ G : X 1-1 Y
3 fsuppco.z φ Z W
4 fsuppco.v φ F V
5 df-f1 G : X 1-1 Y G : X Y Fun G -1
6 5 simprbi G : X 1-1 Y Fun G -1
7 2 6 syl φ Fun G -1
8 cofunex2g F V Fun G -1 F G V
9 4 7 8 syl2anc φ F G V
10 suppimacnv F G V Z W F G supp Z = F G -1 V Z
11 9 3 10 syl2anc φ F G supp Z = F G -1 V Z
12 suppimacnv F V Z W F supp Z = F -1 V Z
13 4 3 12 syl2anc φ F supp Z = F -1 V Z
14 1 fsuppimpd φ F supp Z Fin
15 13 14 eqeltrrd φ F -1 V Z Fin
16 15 2 fsuppcolem φ F G -1 V Z Fin
17 11 16 eqeltrd φ F G supp Z Fin
18 fsuppimp finSupp Z F Fun F F supp Z Fin
19 18 simpld finSupp Z F Fun F
20 1 19 syl φ Fun F
21 f1fun G : X 1-1 Y Fun G
22 2 21 syl φ Fun G
23 funco Fun F Fun G Fun F G
24 20 22 23 syl2anc φ Fun F G
25 funisfsupp Fun F G F G V Z W finSupp Z F G F G supp Z Fin
26 24 9 3 25 syl3anc φ finSupp Z F G F G supp Z Fin
27 17 26 mpbird φ finSupp Z F G