Metamath Proof Explorer


Theorem fsuppimp

Description: Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019)

Ref Expression
Assertion fsuppimp finSuppZRFunRRsuppZFin

Proof

Step Hyp Ref Expression
1 relfsupp RelfinSupp
2 1 brrelex12i finSuppZRRVZV
3 isfsupp RVZVfinSuppZRFunRRsuppZFin
4 3 biimpd RVZVfinSuppZRFunRRsuppZFin
5 2 4 mpcom finSuppZRFunRRsuppZFin