| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppco2.z |
|
| 2 |
|
fsuppco2.f |
|
| 3 |
|
fsuppco2.g |
|
| 4 |
|
fsuppco2.a |
|
| 5 |
|
fsuppco2.b |
|
| 6 |
|
fsuppco2.n |
|
| 7 |
|
fsuppco2.i |
|
| 8 |
3
|
ffund |
|
| 9 |
2
|
ffund |
|
| 10 |
|
funco |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
6
|
fsuppimpd |
|
| 13 |
|
fco |
|
| 14 |
3 2 13
|
syl2anc |
|
| 15 |
|
eldifi |
|
| 16 |
|
fvco3 |
|
| 17 |
2 15 16
|
syl2an |
|
| 18 |
|
ssidd |
|
| 19 |
2 18 4 1
|
suppssr |
|
| 20 |
19
|
fveq2d |
|
| 21 |
7
|
adantr |
|
| 22 |
17 20 21
|
3eqtrd |
|
| 23 |
14 22
|
suppss |
|
| 24 |
12 23
|
ssfid |
|
| 25 |
3 5
|
fexd |
|
| 26 |
2 4
|
fexd |
|
| 27 |
|
coexg |
|
| 28 |
25 26 27
|
syl2anc |
|
| 29 |
|
isfsupp |
|
| 30 |
28 1 29
|
syl2anc |
|
| 31 |
11 24 30
|
mpbir2and |
|