| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppco2.z |
|- ( ph -> Z e. W ) |
| 2 |
|
fsuppco2.f |
|- ( ph -> F : A --> B ) |
| 3 |
|
fsuppco2.g |
|- ( ph -> G : B --> B ) |
| 4 |
|
fsuppco2.a |
|- ( ph -> A e. U ) |
| 5 |
|
fsuppco2.b |
|- ( ph -> B e. V ) |
| 6 |
|
fsuppco2.n |
|- ( ph -> F finSupp Z ) |
| 7 |
|
fsuppco2.i |
|- ( ph -> ( G ` Z ) = Z ) |
| 8 |
3
|
ffund |
|- ( ph -> Fun G ) |
| 9 |
2
|
ffund |
|- ( ph -> Fun F ) |
| 10 |
|
funco |
|- ( ( Fun G /\ Fun F ) -> Fun ( G o. F ) ) |
| 11 |
8 9 10
|
syl2anc |
|- ( ph -> Fun ( G o. F ) ) |
| 12 |
6
|
fsuppimpd |
|- ( ph -> ( F supp Z ) e. Fin ) |
| 13 |
|
fco |
|- ( ( G : B --> B /\ F : A --> B ) -> ( G o. F ) : A --> B ) |
| 14 |
3 2 13
|
syl2anc |
|- ( ph -> ( G o. F ) : A --> B ) |
| 15 |
|
eldifi |
|- ( x e. ( A \ ( F supp Z ) ) -> x e. A ) |
| 16 |
|
fvco3 |
|- ( ( F : A --> B /\ x e. A ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 17 |
2 15 16
|
syl2an |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 18 |
|
ssidd |
|- ( ph -> ( F supp Z ) C_ ( F supp Z ) ) |
| 19 |
2 18 4 1
|
suppssr |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( F ` x ) = Z ) |
| 20 |
19
|
fveq2d |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` ( F ` x ) ) = ( G ` Z ) ) |
| 21 |
7
|
adantr |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( G ` Z ) = Z ) |
| 22 |
17 20 21
|
3eqtrd |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( ( G o. F ) ` x ) = Z ) |
| 23 |
14 22
|
suppss |
|- ( ph -> ( ( G o. F ) supp Z ) C_ ( F supp Z ) ) |
| 24 |
12 23
|
ssfid |
|- ( ph -> ( ( G o. F ) supp Z ) e. Fin ) |
| 25 |
3 5
|
fexd |
|- ( ph -> G e. _V ) |
| 26 |
2 4
|
fexd |
|- ( ph -> F e. _V ) |
| 27 |
|
coexg |
|- ( ( G e. _V /\ F e. _V ) -> ( G o. F ) e. _V ) |
| 28 |
25 26 27
|
syl2anc |
|- ( ph -> ( G o. F ) e. _V ) |
| 29 |
|
isfsupp |
|- ( ( ( G o. F ) e. _V /\ Z e. W ) -> ( ( G o. F ) finSupp Z <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp Z ) e. Fin ) ) ) |
| 30 |
28 1 29
|
syl2anc |
|- ( ph -> ( ( G o. F ) finSupp Z <-> ( Fun ( G o. F ) /\ ( ( G o. F ) supp Z ) e. Fin ) ) ) |
| 31 |
11 24 30
|
mpbir2and |
|- ( ph -> ( G o. F ) finSupp Z ) |