Metamath Proof Explorer


Theorem fsuppsssuppgd

Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)

Ref Expression
Hypotheses fsuppsssuppgd.g φGV
fsuppsssuppgd.z φZW
fsuppsssuppgd.1 φFunG
fsuppsssuppgd.2 φfinSuppOF
fsuppsssuppgd.3 φGsuppZFsuppO
Assertion fsuppsssuppgd φfinSuppZG

Proof

Step Hyp Ref Expression
1 fsuppsssuppgd.g φGV
2 fsuppsssuppgd.z φZW
3 fsuppsssuppgd.1 φFunG
4 fsuppsssuppgd.2 φfinSuppOF
5 fsuppsssuppgd.3 φGsuppZFsuppO
6 4 fsuppimpd φFsuppOFin
7 suppssfifsupp GVFunGZWFsuppOFinGsuppZFsuppOfinSuppZG
8 1 3 2 6 5 7 syl32anc φfinSuppZG