Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppsssuppgd.g | |
|
fsuppsssuppgd.z | |
||
fsuppsssuppgd.1 | |
||
fsuppsssuppgd.2 | |
||
fsuppsssuppgd.3 | |
||
Assertion | fsuppsssuppgd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppsssuppgd.g | |
|
2 | fsuppsssuppgd.z | |
|
3 | fsuppsssuppgd.1 | |
|
4 | fsuppsssuppgd.2 | |
|
5 | fsuppsssuppgd.3 | |
|
6 | 4 | fsuppimpd | |
7 | suppssfifsupp | |
|
8 | 1 3 2 6 5 7 | syl32anc | |