Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppsssuppgd.g | ||
| fsuppsssuppgd.z | |||
| fsuppsssuppgd.1 | |||
| fsuppsssuppgd.2 | |||
| fsuppsssuppgd.3 | |||
| Assertion | fsuppsssuppgd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppsssuppgd.g | ||
| 2 | fsuppsssuppgd.z | ||
| 3 | fsuppsssuppgd.1 | ||
| 4 | fsuppsssuppgd.2 | ||
| 5 | fsuppsssuppgd.3 | ||
| 6 | 4 | fsuppimpd | |
| 7 | suppssfifsupp | ||
| 8 | 1 3 2 6 5 7 | syl32anc |