Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Utility theorems
fsuppsssuppgd
Metamath Proof Explorer
Description: If the support of a function is a subset of a finite support, it is
finite. Deduction associated with fsuppsssupp . (Contributed by SN , 6-Mar-2025)
Ref
Expression
Hypotheses
fsuppsssuppgd.g
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 )
fsuppsssuppgd.z
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 )
fsuppsssuppgd.1
⊢ ( 𝜑 → Fun 𝐺 )
fsuppsssuppgd.2
⊢ ( 𝜑 → 𝐹 finSupp 𝑂 )
fsuppsssuppgd.3
⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑂 ) )
Assertion
fsuppsssuppgd
⊢ ( 𝜑 → 𝐺 finSupp 𝑍 )
Proof
Step
Hyp
Ref
Expression
1
fsuppsssuppgd.g
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 )
2
fsuppsssuppgd.z
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 )
3
fsuppsssuppgd.1
⊢ ( 𝜑 → Fun 𝐺 )
4
fsuppsssuppgd.2
⊢ ( 𝜑 → 𝐹 finSupp 𝑂 )
5
fsuppsssuppgd.3
⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑂 ) )
6
4
fsuppimpd
⊢ ( 𝜑 → ( 𝐹 supp 𝑂 ) ∈ Fin )
7
suppssfifsupp
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊 ) ∧ ( ( 𝐹 supp 𝑂 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑂 ) ) ) → 𝐺 finSupp 𝑍 )
8
1 3 2 6 5 7
syl32anc
⊢ ( 𝜑 → 𝐺 finSupp 𝑍 )