Metamath Proof Explorer


Theorem fsuppsssuppgd

Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)

Ref Expression
Hypotheses fsuppsssuppgd.g ( 𝜑𝐺𝑉 )
fsuppsssuppgd.z ( 𝜑𝑍𝑊 )
fsuppsssuppgd.1 ( 𝜑 → Fun 𝐺 )
fsuppsssuppgd.2 ( 𝜑𝐹 finSupp 𝑂 )
fsuppsssuppgd.3 ( 𝜑 → ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑂 ) )
Assertion fsuppsssuppgd ( 𝜑𝐺 finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 fsuppsssuppgd.g ( 𝜑𝐺𝑉 )
2 fsuppsssuppgd.z ( 𝜑𝑍𝑊 )
3 fsuppsssuppgd.1 ( 𝜑 → Fun 𝐺 )
4 fsuppsssuppgd.2 ( 𝜑𝐹 finSupp 𝑂 )
5 fsuppsssuppgd.3 ( 𝜑 → ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑂 ) )
6 4 fsuppimpd ( 𝜑 → ( 𝐹 supp 𝑂 ) ∈ Fin )
7 suppssfifsupp ( ( ( 𝐺𝑉 ∧ Fun 𝐺𝑍𝑊 ) ∧ ( ( 𝐹 supp 𝑂 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑂 ) ) ) → 𝐺 finSupp 𝑍 )
8 1 3 2 6 5 7 syl32anc ( 𝜑𝐺 finSupp 𝑍 )