Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppss.1 |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐺 ) |
2 |
|
fsuppss.2 |
⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) |
3 |
|
relfsupp |
⊢ Rel finSupp |
4 |
|
brrelex1 |
⊢ ( ( Rel finSupp ∧ 𝐺 finSupp 𝑍 ) → 𝐺 ∈ V ) |
5 |
3 2 4
|
sylancr |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
6 |
5 1
|
ssexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
7 |
|
brrelex2 |
⊢ ( ( Rel finSupp ∧ 𝐺 finSupp 𝑍 ) → 𝑍 ∈ V ) |
8 |
3 2 7
|
sylancr |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
9 |
2
|
fsuppfund |
⊢ ( 𝜑 → Fun 𝐺 ) |
10 |
|
funss |
⊢ ( 𝐹 ⊆ 𝐺 → ( Fun 𝐺 → Fun 𝐹 ) ) |
11 |
1 9 10
|
sylc |
⊢ ( 𝜑 → Fun 𝐹 ) |
12 |
|
funsssuppss |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
13 |
9 1 5 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
14 |
6 8 11 2 13
|
fsuppsssuppgd |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |