Metamath Proof Explorer


Theorem fsuppss

Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses fsuppss.1 ( 𝜑𝐹𝐺 )
fsuppss.2 ( 𝜑𝐺 finSupp 𝑍 )
Assertion fsuppss ( 𝜑𝐹 finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 fsuppss.1 ( 𝜑𝐹𝐺 )
2 fsuppss.2 ( 𝜑𝐺 finSupp 𝑍 )
3 relfsupp Rel finSupp
4 brrelex1 ( ( Rel finSupp ∧ 𝐺 finSupp 𝑍 ) → 𝐺 ∈ V )
5 3 2 4 sylancr ( 𝜑𝐺 ∈ V )
6 5 1 ssexd ( 𝜑𝐹 ∈ V )
7 brrelex2 ( ( Rel finSupp ∧ 𝐺 finSupp 𝑍 ) → 𝑍 ∈ V )
8 3 2 7 sylancr ( 𝜑𝑍 ∈ V )
9 2 fsuppfund ( 𝜑 → Fun 𝐺 )
10 funss ( 𝐹𝐺 → ( Fun 𝐺 → Fun 𝐹 ) )
11 1 9 10 sylc ( 𝜑 → Fun 𝐹 )
12 funsssuppss ( ( Fun 𝐺𝐹𝐺𝐺 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) )
13 9 1 5 12 syl3anc ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) )
14 6 8 11 2 13 fsuppsssuppgd ( 𝜑𝐹 finSupp 𝑍 )