Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppss.1 | |- ( ph -> F C_ G ) |
|
fsuppss.2 | |- ( ph -> G finSupp Z ) |
||
Assertion | fsuppss | |- ( ph -> F finSupp Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppss.1 | |- ( ph -> F C_ G ) |
|
2 | fsuppss.2 | |- ( ph -> G finSupp Z ) |
|
3 | relfsupp | |- Rel finSupp |
|
4 | brrelex1 | |- ( ( Rel finSupp /\ G finSupp Z ) -> G e. _V ) |
|
5 | 3 2 4 | sylancr | |- ( ph -> G e. _V ) |
6 | 5 1 | ssexd | |- ( ph -> F e. _V ) |
7 | brrelex2 | |- ( ( Rel finSupp /\ G finSupp Z ) -> Z e. _V ) |
|
8 | 3 2 7 | sylancr | |- ( ph -> Z e. _V ) |
9 | 2 | fsuppfund | |- ( ph -> Fun G ) |
10 | funss | |- ( F C_ G -> ( Fun G -> Fun F ) ) |
|
11 | 1 9 10 | sylc | |- ( ph -> Fun F ) |
12 | funsssuppss | |- ( ( Fun G /\ F C_ G /\ G e. _V ) -> ( F supp Z ) C_ ( G supp Z ) ) |
|
13 | 9 1 5 12 | syl3anc | |- ( ph -> ( F supp Z ) C_ ( G supp Z ) ) |
14 | 6 8 11 2 13 | fsuppsssuppgd | |- ( ph -> F finSupp Z ) |