Metamath Proof Explorer


Theorem fsuppss

Description: A subset of a finitely supported function is a finitely supported function. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses fsuppss.1
|- ( ph -> F C_ G )
fsuppss.2
|- ( ph -> G finSupp Z )
Assertion fsuppss
|- ( ph -> F finSupp Z )

Proof

Step Hyp Ref Expression
1 fsuppss.1
 |-  ( ph -> F C_ G )
2 fsuppss.2
 |-  ( ph -> G finSupp Z )
3 relfsupp
 |-  Rel finSupp
4 brrelex1
 |-  ( ( Rel finSupp /\ G finSupp Z ) -> G e. _V )
5 3 2 4 sylancr
 |-  ( ph -> G e. _V )
6 5 1 ssexd
 |-  ( ph -> F e. _V )
7 brrelex2
 |-  ( ( Rel finSupp /\ G finSupp Z ) -> Z e. _V )
8 3 2 7 sylancr
 |-  ( ph -> Z e. _V )
9 2 fsuppfund
 |-  ( ph -> Fun G )
10 funss
 |-  ( F C_ G -> ( Fun G -> Fun F ) )
11 1 9 10 sylc
 |-  ( ph -> Fun F )
12 funsssuppss
 |-  ( ( Fun G /\ F C_ G /\ G e. _V ) -> ( F supp Z ) C_ ( G supp Z ) )
13 9 1 5 12 syl3anc
 |-  ( ph -> ( F supp Z ) C_ ( G supp Z ) )
14 6 8 11 2 13 fsuppsssuppgd
 |-  ( ph -> F finSupp Z )