Metamath Proof Explorer


Theorem elmapssresd

Description: A restricted mapping is a mapping. EDITORIAL: Could be used to shorten elpm2r with some reordering involving mapsspm . (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses elmapssresd.1 ( 𝜑𝐴 ∈ ( 𝐵m 𝐶 ) )
elmapssresd.2 ( 𝜑𝐷𝐶 )
Assertion elmapssresd ( 𝜑 → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐷 ) )

Proof

Step Hyp Ref Expression
1 elmapssresd.1 ( 𝜑𝐴 ∈ ( 𝐵m 𝐶 ) )
2 elmapssresd.2 ( 𝜑𝐷𝐶 )
3 elmapssres ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷𝐶 ) → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐷 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐷 ) )