Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Utility theorems
elmapssresd
Metamath Proof Explorer
Description: A restricted mapping is a mapping. EDITORIAL: Could be used to shorten
elpm2r with some reordering involving mapsspm . (Contributed by SN , 11-Mar-2025)
Ref
Expression
Hypotheses
elmapssresd.1
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) )
elmapssresd.2
⊢ ( 𝜑 → 𝐷 ⊆ 𝐶 )
Assertion
elmapssresd
⊢ ( 𝜑 → ( 𝐴 ↾ 𝐷 ) ∈ ( 𝐵 ↑m 𝐷 ) )
Proof
Step
Hyp
Ref
Expression
1
elmapssresd.1
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) )
2
elmapssresd.2
⊢ ( 𝜑 → 𝐷 ⊆ 𝐶 )
3
elmapssres
⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐴 ↾ 𝐷 ) ∈ ( 𝐵 ↑m 𝐷 ) )
4
1 2 3
syl2anc
⊢ ( 𝜑 → ( 𝐴 ↾ 𝐷 ) ∈ ( 𝐵 ↑m 𝐷 ) )