Metamath Proof Explorer


Theorem mapcod

Description: Compose two mappings. (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses mapcod.1 ( 𝜑𝐹 ∈ ( 𝐴m 𝐵 ) )
mapcod.2 ( 𝜑𝐺 ∈ ( 𝐵m 𝐶 ) )
Assertion mapcod ( 𝜑 → ( 𝐹𝐺 ) ∈ ( 𝐴m 𝐶 ) )

Proof

Step Hyp Ref Expression
1 mapcod.1 ( 𝜑𝐹 ∈ ( 𝐴m 𝐵 ) )
2 mapcod.2 ( 𝜑𝐺 ∈ ( 𝐵m 𝐶 ) )
3 elmapex ( 𝐹 ∈ ( 𝐴m 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
4 1 3 syl ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
5 4 simpld ( 𝜑𝐴 ∈ V )
6 elmapex ( 𝐺 ∈ ( 𝐵m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) )
7 2 6 syl ( 𝜑 → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) )
8 7 simprd ( 𝜑𝐶 ∈ V )
9 elmapi ( 𝐹 ∈ ( 𝐴m 𝐵 ) → 𝐹 : 𝐵𝐴 )
10 1 9 syl ( 𝜑𝐹 : 𝐵𝐴 )
11 elmapi ( 𝐺 ∈ ( 𝐵m 𝐶 ) → 𝐺 : 𝐶𝐵 )
12 2 11 syl ( 𝜑𝐺 : 𝐶𝐵 )
13 10 12 fcod ( 𝜑 → ( 𝐹𝐺 ) : 𝐶𝐴 )
14 5 8 13 elmapdd ( 𝜑 → ( 𝐹𝐺 ) ∈ ( 𝐴m 𝐶 ) )