Step |
Hyp |
Ref |
Expression |
1 |
|
mapcod.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ) |
2 |
|
mapcod.2 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐵 ↑m 𝐶 ) ) |
3 |
|
elmapex |
⊢ ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
5 |
4
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
6 |
|
elmapex |
⊢ ( 𝐺 ∈ ( 𝐵 ↑m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
8 |
7
|
simprd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
9 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
11 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐺 : 𝐶 ⟶ 𝐵 ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐵 ) |
13 |
10 12
|
fcod |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐶 ⟶ 𝐴 ) |
14 |
5 8 13
|
elmapdd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝐴 ↑m 𝐶 ) ) |