Metamath Proof Explorer


Theorem mapcod

Description: Compose two mappings. (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses mapcod.1
|- ( ph -> F e. ( A ^m B ) )
mapcod.2
|- ( ph -> G e. ( B ^m C ) )
Assertion mapcod
|- ( ph -> ( F o. G ) e. ( A ^m C ) )

Proof

Step Hyp Ref Expression
1 mapcod.1
 |-  ( ph -> F e. ( A ^m B ) )
2 mapcod.2
 |-  ( ph -> G e. ( B ^m C ) )
3 elmapex
 |-  ( F e. ( A ^m B ) -> ( A e. _V /\ B e. _V ) )
4 1 3 syl
 |-  ( ph -> ( A e. _V /\ B e. _V ) )
5 4 simpld
 |-  ( ph -> A e. _V )
6 elmapex
 |-  ( G e. ( B ^m C ) -> ( B e. _V /\ C e. _V ) )
7 2 6 syl
 |-  ( ph -> ( B e. _V /\ C e. _V ) )
8 7 simprd
 |-  ( ph -> C e. _V )
9 elmapi
 |-  ( F e. ( A ^m B ) -> F : B --> A )
10 1 9 syl
 |-  ( ph -> F : B --> A )
11 elmapi
 |-  ( G e. ( B ^m C ) -> G : C --> B )
12 2 11 syl
 |-  ( ph -> G : C --> B )
13 10 12 fcod
 |-  ( ph -> ( F o. G ) : C --> A )
14 5 8 13 elmapdd
 |-  ( ph -> ( F o. G ) e. ( A ^m C ) )