Step |
Hyp |
Ref |
Expression |
1 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐴 : 𝐶 ⟶ 𝐵 ) |
2 |
|
fssres |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐵 ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐴 ↾ 𝐷 ) : 𝐷 ⟶ 𝐵 ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐴 ↾ 𝐷 ) : 𝐷 ⟶ 𝐵 ) |
4 |
|
elmapex |
⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
5 |
4
|
simpld |
⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐵 ∈ V ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → 𝐵 ∈ V ) |
7 |
4
|
simprd |
⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐶 ∈ V ) |
8 |
|
ssexg |
⊢ ( ( 𝐷 ⊆ 𝐶 ∧ 𝐶 ∈ V ) → 𝐷 ∈ V ) |
9 |
8
|
ancoms |
⊢ ( ( 𝐶 ∈ V ∧ 𝐷 ⊆ 𝐶 ) → 𝐷 ∈ V ) |
10 |
7 9
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → 𝐷 ∈ V ) |
11 |
6 10
|
elmapd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → ( ( 𝐴 ↾ 𝐷 ) ∈ ( 𝐵 ↑m 𝐷 ) ↔ ( 𝐴 ↾ 𝐷 ) : 𝐷 ⟶ 𝐵 ) ) |
12 |
3 11
|
mpbird |
⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐴 ↾ 𝐷 ) ∈ ( 𝐵 ↑m 𝐷 ) ) |