Metamath Proof Explorer


Theorem elmapssres

Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion elmapssres ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷𝐶 ) → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐷 ) )

Proof

Step Hyp Ref Expression
1 elmapi ( 𝐴 ∈ ( 𝐵m 𝐶 ) → 𝐴 : 𝐶𝐵 )
2 fssres ( ( 𝐴 : 𝐶𝐵𝐷𝐶 ) → ( 𝐴𝐷 ) : 𝐷𝐵 )
3 1 2 sylan ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷𝐶 ) → ( 𝐴𝐷 ) : 𝐷𝐵 )
4 elmapex ( 𝐴 ∈ ( 𝐵m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) )
5 4 simpld ( 𝐴 ∈ ( 𝐵m 𝐶 ) → 𝐵 ∈ V )
6 5 adantr ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷𝐶 ) → 𝐵 ∈ V )
7 4 simprd ( 𝐴 ∈ ( 𝐵m 𝐶 ) → 𝐶 ∈ V )
8 ssexg ( ( 𝐷𝐶𝐶 ∈ V ) → 𝐷 ∈ V )
9 8 ancoms ( ( 𝐶 ∈ V ∧ 𝐷𝐶 ) → 𝐷 ∈ V )
10 7 9 sylan ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷𝐶 ) → 𝐷 ∈ V )
11 6 10 elmapd ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷𝐶 ) → ( ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐷 ) ↔ ( 𝐴𝐷 ) : 𝐷𝐵 ) )
12 3 11 mpbird ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷𝐶 ) → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐷 ) )