Metamath Proof Explorer


Theorem elmapd

Description: Deduction form of elmapg . (Contributed by BJ, 11-Apr-2020)

Ref Expression
Hypotheses elmapd.a ( 𝜑𝐴𝑉 )
elmapd.b ( 𝜑𝐵𝑊 )
Assertion elmapd ( 𝜑 → ( 𝐶 ∈ ( 𝐴m 𝐵 ) ↔ 𝐶 : 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 elmapd.a ( 𝜑𝐴𝑉 )
2 elmapd.b ( 𝜑𝐵𝑊 )
3 elmapg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐶 ∈ ( 𝐴m 𝐵 ) ↔ 𝐶 : 𝐵𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐶 ∈ ( 𝐴m 𝐵 ) ↔ 𝐶 : 𝐵𝐴 ) )