Metamath Proof Explorer
Description: Deduction form of elmapg . (Contributed by BJ, 11-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
elmapd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
|
elmapd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
|
Assertion |
elmapd |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐶 : 𝐵 ⟶ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elmapd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
elmapd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐶 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐶 : 𝐵 ⟶ 𝐴 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐶 : 𝐵 ⟶ 𝐴 ) ) |