Metamath Proof Explorer


Theorem 0fsupp

Description: The empty set is a finitely supported function. (Contributed by AV, 19-Jul-2019)

Ref Expression
Assertion 0fsupp ZVfinSuppZ

Proof

Step Hyp Ref Expression
1 supp0 ZVsuppZ=
2 0fin Fin
3 1 2 eqeltrdi ZVsuppZFin
4 fun0 Fun
5 0ex V
6 funisfsupp FunVZVfinSuppZsuppZFin
7 4 5 6 mp3an12 ZVfinSuppZsuppZFin
8 3 7 mpbird ZVfinSuppZ