Metamath Proof Explorer


Theorem fisuppfi

Description: A function on a finite set is finitely supported. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses fisuppfi.1 φAFin
fisuppfi.2 φF:AB
Assertion fisuppfi φF-1CFin

Proof

Step Hyp Ref Expression
1 fisuppfi.1 φAFin
2 fisuppfi.2 φF:AB
3 cnvimass F-1CdomF
4 3 2 fssdm φF-1CA
5 1 4 ssfid φF-1CFin