Metamath Proof Explorer


Theorem fisuppfi

Description: A function on a finite set is finitely supported. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses fisuppfi.1 ( 𝜑𝐴 ∈ Fin )
fisuppfi.2 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion fisuppfi ( 𝜑 → ( 𝐹𝐶 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 fisuppfi.1 ( 𝜑𝐴 ∈ Fin )
2 fisuppfi.2 ( 𝜑𝐹 : 𝐴𝐵 )
3 cnvimass ( 𝐹𝐶 ) ⊆ dom 𝐹
4 3 2 fssdm ( 𝜑 → ( 𝐹𝐶 ) ⊆ 𝐴 )
5 1 4 ssfid ( 𝜑 → ( 𝐹𝐶 ) ∈ Fin )