Metamath Proof Explorer
Description: A function on a finite set is finitely supported. (Contributed by Mario
Carneiro, 20-Jun-2015)
|
|
Ref |
Expression |
|
Hypotheses |
fisuppfi.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
fisuppfi.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
|
Assertion |
fisuppfi |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐶 ) ∈ Fin ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fisuppfi.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
fisuppfi.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 3 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝐶 ) ⊆ dom 𝐹 |
| 4 |
3 2
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐶 ) ⊆ 𝐴 ) |
| 5 |
1 4
|
ssfid |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐶 ) ∈ Fin ) |