Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
imaeq2
Next ⟩
imaeq1i
Metamath Proof Explorer
Ascii
Unicode
Theorem
imaeq2
Description:
Equality theorem for image.
(Contributed by
NM
, 14-Aug-1994)
Ref
Expression
Assertion
imaeq2
⊢
A
=
B
→
C
A
=
C
B
Proof
Step
Hyp
Ref
Expression
1
reseq2
⊢
A
=
B
→
C
↾
A
=
C
↾
B
2
1
rneqd
⊢
A
=
B
→
ran
⁡
C
↾
A
=
ran
⁡
C
↾
B
3
df-ima
⊢
C
A
=
ran
⁡
C
↾
A
4
df-ima
⊢
C
B
=
ran
⁡
C
↾
B
5
2
3
4
3eqtr4g
⊢
A
=
B
→
C
A
=
C
B