Metamath Proof Explorer


Theorem imafiALT

Description: Shorter proof of imafi using ax-pow . (Contributed by Stefan O'Rear, 22-Feb-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion imafiALT FunFXFinFXFin

Proof

Step Hyp Ref Expression
1 imadmres FdomFX=FX
2 simpr FunFXFinXFin
3 dmres domFX=XdomF
4 inss1 XdomFX
5 3 4 eqsstri domFXX
6 ssfi XFindomFXXdomFXFin
7 2 5 6 sylancl FunFXFindomFXFin
8 resss FXF
9 dmss FXFdomFXdomF
10 8 9 mp1i FunFXFindomFXdomF
11 fores FunFdomFXdomFFdomFX:domFXontoFdomFX
12 10 11 syldan FunFXFinFdomFX:domFXontoFdomFX
13 fofi domFXFinFdomFX:domFXontoFdomFXFdomFXFin
14 7 12 13 syl2anc FunFXFinFdomFXFin
15 1 14 eqeltrrid FunFXFinFXFin