Metamath Proof Explorer


Theorem pwfilemOLD

Description: Obsolete version of pwfilem as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis pwfilemOLD.1 F=c𝒫bcx
Assertion pwfilemOLD 𝒫bFin𝒫bxFin

Proof

Step Hyp Ref Expression
1 pwfilemOLD.1 F=c𝒫bcx
2 pwundif 𝒫bx=𝒫bx𝒫b𝒫b
3 vex cV
4 snex xV
5 3 4 unex cxV
6 5 1 fnmpti FFn𝒫b
7 dffn4 FFn𝒫bF:𝒫bontoranF
8 6 7 mpbi F:𝒫bontoranF
9 fodomfi 𝒫bFinF:𝒫bontoranFranF𝒫b
10 8 9 mpan2 𝒫bFinranF𝒫b
11 domfi 𝒫bFinranF𝒫branFFin
12 10 11 mpdan 𝒫bFinranFFin
13 eldifi d𝒫bx𝒫bd𝒫bx
14 4 elpwun d𝒫bxdx𝒫b
15 13 14 sylib d𝒫bx𝒫bdx𝒫b
16 undif1 dxx=dx
17 elpwunsn d𝒫bx𝒫bxd
18 17 snssd d𝒫bx𝒫bxd
19 ssequn2 xddx=d
20 18 19 sylib d𝒫bx𝒫bdx=d
21 16 20 eqtr2id d𝒫bx𝒫bd=dxx
22 uneq1 c=dxcx=dxx
23 22 rspceeqv dx𝒫bd=dxxc𝒫bd=cx
24 15 21 23 syl2anc d𝒫bx𝒫bc𝒫bd=cx
25 1 5 elrnmpti dranFc𝒫bd=cx
26 24 25 sylibr d𝒫bx𝒫bdranF
27 26 ssriv 𝒫bx𝒫branF
28 ssdomg ranFFin𝒫bx𝒫branF𝒫bx𝒫branF
29 12 27 28 mpisyl 𝒫bFin𝒫bx𝒫branF
30 domfi ranFFin𝒫bx𝒫branF𝒫bx𝒫bFin
31 12 29 30 syl2anc 𝒫bFin𝒫bx𝒫bFin
32 unfi 𝒫bx𝒫bFin𝒫bFin𝒫bx𝒫b𝒫bFin
33 31 32 mpancom 𝒫bFin𝒫bx𝒫b𝒫bFin
34 2 33 eqeltrid 𝒫bFin𝒫bxFin