Metamath Proof Explorer


Theorem ssdomg

Description: A set dominates its subsets. Theorem 16 of Suppes p. 94. (Contributed by NM, 19-Jun-1998) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion ssdomg BVABAB

Proof

Step Hyp Ref Expression
1 ssexg ABBVAV
2 simpr ABBVBV
3 f1oi IA:A1-1 ontoA
4 dff1o3 IA:A1-1 ontoAIA:AontoAFunIA-1
5 3 4 mpbi IA:AontoAFunIA-1
6 5 simpli IA:AontoA
7 fof IA:AontoAIA:AA
8 6 7 ax-mp IA:AA
9 fss IA:AAABIA:AB
10 8 9 mpan ABIA:AB
11 funi FunI
12 cnvi I-1=I
13 12 funeqi FunI-1FunI
14 11 13 mpbir FunI-1
15 funres11 FunI-1FunIA-1
16 14 15 ax-mp FunIA-1
17 df-f1 IA:A1-1BIA:ABFunIA-1
18 10 16 17 sylanblrc ABIA:A1-1B
19 18 adantr ABBVIA:A1-1B
20 f1dom2g AVBVIA:A1-1BAB
21 1 2 19 20 syl3anc ABBVAB
22 21 expcom BVABAB