Metamath Proof Explorer


Theorem ener

Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998) (Revised by Mario Carneiro, 15-Nov-2014) (Proof shortened by AV, 1-May-2021)

Ref Expression
Assertion ener ErV

Proof

Step Hyp Ref Expression
1 relen Rel
2 bren xyff:x1-1 ontoy
3 vex yV
4 vex xV
5 f1ocnv f:x1-1 ontoyf-1:y1-1 ontox
6 f1oen2g yVxVf-1:y1-1 ontoxyx
7 3 4 5 6 mp3an12i f:x1-1 ontoyyx
8 7 exlimiv ff:x1-1 ontoyyx
9 2 8 sylbi xyyx
10 bren xygg:x1-1 ontoy
11 bren yzff:y1-1 ontoz
12 exdistrv gfg:x1-1 ontoyf:y1-1 ontozgg:x1-1 ontoyff:y1-1 ontoz
13 vex zV
14 f1oco f:y1-1 ontozg:x1-1 ontoyfg:x1-1 ontoz
15 14 ancoms g:x1-1 ontoyf:y1-1 ontozfg:x1-1 ontoz
16 f1oen2g xVzVfg:x1-1 ontozxz
17 4 13 15 16 mp3an12i g:x1-1 ontoyf:y1-1 ontozxz
18 17 exlimivv gfg:x1-1 ontoyf:y1-1 ontozxz
19 12 18 sylbir gg:x1-1 ontoyff:y1-1 ontozxz
20 10 11 19 syl2anb xyyzxz
21 4 enref xx
22 4 21 2th xVxx
23 1 9 20 22 iseri ErV