Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998) (Revised by Mario Carneiro, 15-Nov-2014) (Proof shortened by AV, 1-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ener | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen | |
|
2 | bren | |
|
3 | vex | |
|
4 | vex | |
|
5 | f1ocnv | |
|
6 | f1oen2g | |
|
7 | 3 4 5 6 | mp3an12i | |
8 | 7 | exlimiv | |
9 | 2 8 | sylbi | |
10 | bren | |
|
11 | bren | |
|
12 | exdistrv | |
|
13 | vex | |
|
14 | f1oco | |
|
15 | 14 | ancoms | |
16 | f1oen2g | |
|
17 | 4 13 15 16 | mp3an12i | |
18 | 17 | exlimivv | |
19 | 12 18 | sylbir | |
20 | 10 11 19 | syl2anb | |
21 | 4 | enref | |
22 | 4 21 | 2th | |
23 | 1 9 20 22 | iseri | |