Metamath Proof Explorer


Theorem f1oen2g

Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion f1oen2g A V B W F : A 1-1 onto B A B

Proof

Step Hyp Ref Expression
1 f1of F : A 1-1 onto B F : A B
2 fex2 F : A B A V B W F V
3 1 2 syl3an1 F : A 1-1 onto B A V B W F V
4 3 3coml A V B W F : A 1-1 onto B F V
5 simp3 A V B W F : A 1-1 onto B F : A 1-1 onto B
6 f1oen3g F V F : A 1-1 onto B A B
7 4 5 6 syl2anc A V B W F : A 1-1 onto B A B