Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | f1oen2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
2 | fex2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐹 ∈ V ) | |
3 | 1 2 | syl3an1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐹 ∈ V ) |
4 | 3 | 3coml | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐹 ∈ V ) |
5 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
6 | f1oen3g | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) | |
7 | 4 5 6 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |