Metamath Proof Explorer


Theorem f1oen2g

Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion f1oen2g ( ( 𝐴𝑉𝐵𝑊𝐹 : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 f1of ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴𝐵 )
2 fex2 ( ( 𝐹 : 𝐴𝐵𝐴𝑉𝐵𝑊 ) → 𝐹 ∈ V )
3 1 2 syl3an1 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐴𝑉𝐵𝑊 ) → 𝐹 ∈ V )
4 3 3coml ( ( 𝐴𝑉𝐵𝑊𝐹 : 𝐴1-1-onto𝐵 ) → 𝐹 ∈ V )
5 simp3 ( ( 𝐴𝑉𝐵𝑊𝐹 : 𝐴1-1-onto𝐵 ) → 𝐹 : 𝐴1-1-onto𝐵 )
6 f1oen3g ( ( 𝐹 ∈ V ∧ 𝐹 : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )
7 4 5 6 syl2anc ( ( 𝐴𝑉𝐵𝑊𝐹 : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )