Metamath Proof Explorer


Theorem f1oeng

Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998)

Ref Expression
Assertion f1oeng ( ( 𝐴𝐶𝐹 : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 fornex ( 𝐴𝐶 → ( 𝐹 : 𝐴onto𝐵𝐵 ∈ V ) )
2 f1ofo ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴onto𝐵 )
3 1 2 impel ( ( 𝐴𝐶𝐹 : 𝐴1-1-onto𝐵 ) → 𝐵 ∈ V )
4 f1oen2g ( ( 𝐴𝐶𝐵 ∈ V ∧ 𝐹 : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )
5 4 3com23 ( ( 𝐴𝐶𝐹 : 𝐴1-1-onto𝐵𝐵 ∈ V ) → 𝐴𝐵 )
6 3 5 mpd3an3 ( ( 𝐴𝐶𝐹 : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )