Metamath Proof Explorer


Theorem mpd3an3

Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007)

Ref Expression
Hypotheses mpd3an3.2 ( ( 𝜑𝜓 ) → 𝜒 )
mpd3an3.3 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion mpd3an3 ( ( 𝜑𝜓 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 mpd3an3.2 ( ( 𝜑𝜓 ) → 𝜒 )
2 mpd3an3.3 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
3 2 3expa ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
4 1 3 mpdan ( ( 𝜑𝜓 ) → 𝜃 )