Metamath Proof Explorer


Theorem mpd3an23

Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006)

Ref Expression
Hypotheses mpd3an23.1 ( 𝜑𝜓 )
mpd3an23.2 ( 𝜑𝜒 )
mpd3an23.3 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion mpd3an23 ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 mpd3an23.1 ( 𝜑𝜓 )
2 mpd3an23.2 ( 𝜑𝜒 )
3 mpd3an23.3 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
4 id ( 𝜑𝜑 )
5 4 1 2 3 syl3anc ( 𝜑𝜃 )