Metamath Proof Explorer


Theorem mp3and

Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypotheses mp3and.1 ( 𝜑𝜓 )
mp3and.2 ( 𝜑𝜒 )
mp3and.3 ( 𝜑𝜃 )
mp3and.4 ( 𝜑 → ( ( 𝜓𝜒𝜃 ) → 𝜏 ) )
Assertion mp3and ( 𝜑𝜏 )

Proof

Step Hyp Ref Expression
1 mp3and.1 ( 𝜑𝜓 )
2 mp3and.2 ( 𝜑𝜒 )
3 mp3and.3 ( 𝜑𝜃 )
4 mp3and.4 ( 𝜑 → ( ( 𝜓𝜒𝜃 ) → 𝜏 ) )
5 1 2 3 3jca ( 𝜑 → ( 𝜓𝜒𝜃 ) )
6 5 4 mpd ( 𝜑𝜏 )