Metamath Proof Explorer


Theorem mp3and

Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypotheses mp3and.1
|- ( ph -> ps )
mp3and.2
|- ( ph -> ch )
mp3and.3
|- ( ph -> th )
mp3and.4
|- ( ph -> ( ( ps /\ ch /\ th ) -> ta ) )
Assertion mp3and
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 mp3and.1
 |-  ( ph -> ps )
2 mp3and.2
 |-  ( ph -> ch )
3 mp3and.3
 |-  ( ph -> th )
4 mp3and.4
 |-  ( ph -> ( ( ps /\ ch /\ th ) -> ta ) )
5 1 2 3 3jca
 |-  ( ph -> ( ps /\ ch /\ th ) )
6 5 4 mpd
 |-  ( ph -> ta )