Metamath Proof Explorer


Theorem mpd3an23

Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006)

Ref Expression
Hypotheses mpd3an23.1
|- ( ph -> ps )
mpd3an23.2
|- ( ph -> ch )
mpd3an23.3
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion mpd3an23
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 mpd3an23.1
 |-  ( ph -> ps )
2 mpd3an23.2
 |-  ( ph -> ch )
3 mpd3an23.3
 |-  ( ( ph /\ ps /\ ch ) -> th )
4 id
 |-  ( ph -> ph )
5 4 1 2 3 syl3anc
 |-  ( ph -> th )