Metamath Proof Explorer


Theorem mpd3an3

Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007)

Ref Expression
Hypotheses mpd3an3.2
|- ( ( ph /\ ps ) -> ch )
mpd3an3.3
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion mpd3an3
|- ( ( ph /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 mpd3an3.2
 |-  ( ( ph /\ ps ) -> ch )
2 mpd3an3.3
 |-  ( ( ph /\ ps /\ ch ) -> th )
3 2 3expa
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
4 1 3 mpdan
 |-  ( ( ph /\ ps ) -> th )