Metamath Proof Explorer


Theorem f1oen3g

Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion f1oen3g ( ( 𝐹𝑉𝐹 : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 f1oeq1 ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1-onto𝐵 ) )
2 1 spcegv ( 𝐹𝑉 → ( 𝐹 : 𝐴1-1-onto𝐵 → ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 ) )
3 2 imp ( ( 𝐹𝑉𝐹 : 𝐴1-1-onto𝐵 ) → ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 )
4 bren ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 )
5 3 4 sylibr ( ( 𝐹𝑉𝐹 : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )