Metamath Proof Explorer


Theorem f1oen3g

Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by NM, 13-Jan-2007) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion f1oen3g
|- ( ( F e. V /\ F : A -1-1-onto-> B ) -> A ~~ B )

Proof

Step Hyp Ref Expression
1 f1oeq1
 |-  ( f = F -> ( f : A -1-1-onto-> B <-> F : A -1-1-onto-> B ) )
2 1 spcegv
 |-  ( F e. V -> ( F : A -1-1-onto-> B -> E. f f : A -1-1-onto-> B ) )
3 2 imp
 |-  ( ( F e. V /\ F : A -1-1-onto-> B ) -> E. f f : A -1-1-onto-> B )
4 bren
 |-  ( A ~~ B <-> E. f f : A -1-1-onto-> B )
5 3 4 sylibr
 |-  ( ( F e. V /\ F : A -1-1-onto-> B ) -> A ~~ B )