Metamath Proof Explorer


Theorem spcegv

Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994) Avoid ax-10 , ax-11 . (Revised by Wolf Lammen, 25-Aug-2023)

Ref Expression
Hypothesis spcgv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion spcegv ( 𝐴𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 spcgv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
3 1 biimprcd ( 𝜓 → ( 𝑥 = 𝐴𝜑 ) )
4 3 eximdv ( 𝜓 → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝜑 ) )
5 2 4 syl5com ( 𝐴𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) )