Metamath Proof Explorer


Theorem f1oco

Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998)

Ref Expression
Assertion f1oco F:B1-1 ontoCG:A1-1 ontoBFG:A1-1 ontoC

Proof

Step Hyp Ref Expression
1 df-f1o F:B1-1 ontoCF:B1-1CF:BontoC
2 df-f1o G:A1-1 ontoBG:A1-1BG:AontoB
3 f1co F:B1-1CG:A1-1BFG:A1-1C
4 foco F:BontoCG:AontoBFG:AontoC
5 3 4 anim12i F:B1-1CG:A1-1BF:BontoCG:AontoBFG:A1-1CFG:AontoC
6 5 an4s F:B1-1CF:BontoCG:A1-1BG:AontoBFG:A1-1CFG:AontoC
7 1 2 6 syl2anb F:B1-1 ontoCG:A1-1 ontoBFG:A1-1CFG:AontoC
8 df-f1o FG:A1-1 ontoCFG:A1-1CFG:AontoC
9 7 8 sylibr F:B1-1 ontoCG:A1-1 ontoBFG:A1-1 ontoC