Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1cnv
Next ⟩
funcocnv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1cnv
Description:
The converse of an injective function is bijective.
(Contributed by
FL
, 11-Nov-2011)
Ref
Expression
Assertion
f1cnv
⊢
F
:
A
⟶
1-1
B
→
F
-1
:
ran
⁡
F
⟶
1-1 onto
A
Proof
Step
Hyp
Ref
Expression
1
f1f1orn
⊢
F
:
A
⟶
1-1
B
→
F
:
A
⟶
1-1 onto
ran
⁡
F
2
f1ocnv
⊢
F
:
A
⟶
1-1 onto
ran
⁡
F
→
F
-1
:
ran
⁡
F
⟶
1-1 onto
A
3
1
2
syl
⊢
F
:
A
⟶
1-1
B
→
F
-1
:
ran
⁡
F
⟶
1-1 onto
A