Metamath Proof Explorer


Theorem f1f1orn

Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004)

Ref Expression
Assertion f1f1orn F:A1-1BF:A1-1 ontoranF

Proof

Step Hyp Ref Expression
1 f1fn F:A1-1BFFnA
2 df-f1 F:A1-1BF:ABFunF-1
3 2 simprbi F:A1-1BFunF-1
4 f1orn F:A1-1 ontoranFFFnAFunF-1
5 1 3 4 sylanbrc F:A1-1BF:A1-1 ontoranF