Metamath Proof Explorer


Theorem funcocnv2

Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion funcocnv2 FunFFF-1=IranF

Proof

Step Hyp Ref Expression
1 df-fun FunFRelFFF-1I
2 1 simprbi FunFFF-1I
3 iss FF-1IFF-1=IdomFF-1
4 dfdm4 domF=ranF-1
5 dmcoeq domF=ranF-1domFF-1=domF-1
6 4 5 ax-mp domFF-1=domF-1
7 df-rn ranF=domF-1
8 6 7 eqtr4i domFF-1=ranF
9 8 reseq2i IdomFF-1=IranF
10 9 eqeq2i FF-1=IdomFF-1FF-1=IranF
11 3 10 bitri FF-1IFF-1=IranF
12 2 11 sylib FunFFF-1=IranF