| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-fun | 
							 |-  ( Fun F <-> ( Rel F /\ ( F o. `' F ) C_ _I ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							simprbi | 
							 |-  ( Fun F -> ( F o. `' F ) C_ _I )  | 
						
						
							| 3 | 
							
								
							 | 
							iss | 
							 |-  ( ( F o. `' F ) C_ _I <-> ( F o. `' F ) = ( _I |` dom ( F o. `' F ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dfdm4 | 
							 |-  dom F = ran `' F  | 
						
						
							| 5 | 
							
								
							 | 
							dmcoeq | 
							 |-  ( dom F = ran `' F -> dom ( F o. `' F ) = dom `' F )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							 |-  dom ( F o. `' F ) = dom `' F  | 
						
						
							| 7 | 
							
								
							 | 
							df-rn | 
							 |-  ran F = dom `' F  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqtr4i | 
							 |-  dom ( F o. `' F ) = ran F  | 
						
						
							| 9 | 
							
								8
							 | 
							reseq2i | 
							 |-  ( _I |` dom ( F o. `' F ) ) = ( _I |` ran F )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq2i | 
							 |-  ( ( F o. `' F ) = ( _I |` dom ( F o. `' F ) ) <-> ( F o. `' F ) = ( _I |` ran F ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							bitri | 
							 |-  ( ( F o. `' F ) C_ _I <-> ( F o. `' F ) = ( _I |` ran F ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							sylib | 
							 |-  ( Fun F -> ( F o. `' F ) = ( _I |` ran F ) )  |