Description: The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | f1cnv | |- ( F : A -1-1-> B -> `' F : ran F -1-1-onto-> A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f1orn | |- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
|
2 | f1ocnv | |- ( F : A -1-1-onto-> ran F -> `' F : ran F -1-1-onto-> A ) |
|
3 | 1 2 | syl | |- ( F : A -1-1-> B -> `' F : ran F -1-1-onto-> A ) |