Metamath Proof Explorer


Theorem ssdomg

Description: A set dominates its subsets. Theorem 16 of Suppes p. 94. (Contributed by NM, 19-Jun-1998) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion ssdomg
|- ( B e. V -> ( A C_ B -> A ~<_ B ) )

Proof

Step Hyp Ref Expression
1 ssexg
 |-  ( ( A C_ B /\ B e. V ) -> A e. _V )
2 simpr
 |-  ( ( A C_ B /\ B e. V ) -> B e. V )
3 f1oi
 |-  ( _I |` A ) : A -1-1-onto-> A
4 dff1o3
 |-  ( ( _I |` A ) : A -1-1-onto-> A <-> ( ( _I |` A ) : A -onto-> A /\ Fun `' ( _I |` A ) ) )
5 3 4 mpbi
 |-  ( ( _I |` A ) : A -onto-> A /\ Fun `' ( _I |` A ) )
6 5 simpli
 |-  ( _I |` A ) : A -onto-> A
7 fof
 |-  ( ( _I |` A ) : A -onto-> A -> ( _I |` A ) : A --> A )
8 6 7 ax-mp
 |-  ( _I |` A ) : A --> A
9 fss
 |-  ( ( ( _I |` A ) : A --> A /\ A C_ B ) -> ( _I |` A ) : A --> B )
10 8 9 mpan
 |-  ( A C_ B -> ( _I |` A ) : A --> B )
11 funi
 |-  Fun _I
12 cnvi
 |-  `' _I = _I
13 12 funeqi
 |-  ( Fun `' _I <-> Fun _I )
14 11 13 mpbir
 |-  Fun `' _I
15 funres11
 |-  ( Fun `' _I -> Fun `' ( _I |` A ) )
16 14 15 ax-mp
 |-  Fun `' ( _I |` A )
17 df-f1
 |-  ( ( _I |` A ) : A -1-1-> B <-> ( ( _I |` A ) : A --> B /\ Fun `' ( _I |` A ) ) )
18 10 16 17 sylanblrc
 |-  ( A C_ B -> ( _I |` A ) : A -1-1-> B )
19 18 adantr
 |-  ( ( A C_ B /\ B e. V ) -> ( _I |` A ) : A -1-1-> B )
20 f1dom2g
 |-  ( ( A e. _V /\ B e. V /\ ( _I |` A ) : A -1-1-> B ) -> A ~<_ B )
21 1 2 19 20 syl3anc
 |-  ( ( A C_ B /\ B e. V ) -> A ~<_ B )
22 21 expcom
 |-  ( B e. V -> ( A C_ B -> A ~<_ B ) )