Metamath Proof Explorer


Theorem f1dom2g

Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion f1dom2g
|- ( ( A e. V /\ B e. W /\ F : A -1-1-> B ) -> A ~<_ B )

Proof

Step Hyp Ref Expression
1 f1f
 |-  ( F : A -1-1-> B -> F : A --> B )
2 fex2
 |-  ( ( F : A --> B /\ A e. V /\ B e. W ) -> F e. _V )
3 1 2 syl3an1
 |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> F e. _V )
4 3 3coml
 |-  ( ( A e. V /\ B e. W /\ F : A -1-1-> B ) -> F e. _V )
5 simp3
 |-  ( ( A e. V /\ B e. W /\ F : A -1-1-> B ) -> F : A -1-1-> B )
6 f1eq1
 |-  ( f = F -> ( f : A -1-1-> B <-> F : A -1-1-> B ) )
7 4 5 6 spcedv
 |-  ( ( A e. V /\ B e. W /\ F : A -1-1-> B ) -> E. f f : A -1-1-> B )
8 brdomg
 |-  ( B e. W -> ( A ~<_ B <-> E. f f : A -1-1-> B ) )
9 8 3ad2ant2
 |-  ( ( A e. V /\ B e. W /\ F : A -1-1-> B ) -> ( A ~<_ B <-> E. f f : A -1-1-> B ) )
10 7 9 mpbird
 |-  ( ( A e. V /\ B e. W /\ F : A -1-1-> B ) -> A ~<_ B )