Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dff1o3 | |- ( F : A -1-1-onto-> B <-> ( F : A -onto-> B /\ Fun `' F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan32 | |- ( ( F Fn A /\ Fun `' F /\ ran F = B ) <-> ( ( F Fn A /\ ran F = B ) /\ Fun `' F ) ) |
|
2 | dff1o2 | |- ( F : A -1-1-onto-> B <-> ( F Fn A /\ Fun `' F /\ ran F = B ) ) |
|
3 | df-fo | |- ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) |
|
4 | 3 | anbi1i | |- ( ( F : A -onto-> B /\ Fun `' F ) <-> ( ( F Fn A /\ ran F = B ) /\ Fun `' F ) ) |
5 | 1 2 4 | 3bitr4i | |- ( F : A -1-1-onto-> B <-> ( F : A -onto-> B /\ Fun `' F ) ) |