| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑉 )  →  𝐴  ∈  V )  | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑉 )  →  𝐵  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							f1oi | 
							⊢ (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴  | 
						
						
							| 4 | 
							
								
							 | 
							dff1o3 | 
							⊢ ( (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴  ↔  ( (  I   ↾  𝐴 ) : 𝐴 –onto→ 𝐴  ∧  Fun  ◡ (  I   ↾  𝐴 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mpbi | 
							⊢ ( (  I   ↾  𝐴 ) : 𝐴 –onto→ 𝐴  ∧  Fun  ◡ (  I   ↾  𝐴 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simpli | 
							⊢ (  I   ↾  𝐴 ) : 𝐴 –onto→ 𝐴  | 
						
						
							| 7 | 
							
								
							 | 
							fof | 
							⊢ ( (  I   ↾  𝐴 ) : 𝐴 –onto→ 𝐴  →  (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐴 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							ax-mp | 
							⊢ (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐴  | 
						
						
							| 9 | 
							
								
							 | 
							fss | 
							⊢ ( ( (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐴  ∧  𝐴  ⊆  𝐵 )  →  (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpan | 
							⊢ ( 𝐴  ⊆  𝐵  →  (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							funi | 
							⊢ Fun   I   | 
						
						
							| 12 | 
							
								
							 | 
							cnvi | 
							⊢ ◡  I   =   I   | 
						
						
							| 13 | 
							
								12
							 | 
							funeqi | 
							⊢ ( Fun  ◡  I   ↔  Fun   I  )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							mpbir | 
							⊢ Fun  ◡  I   | 
						
						
							| 15 | 
							
								
							 | 
							funres11 | 
							⊢ ( Fun  ◡  I   →  Fun  ◡ (  I   ↾  𝐴 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ax-mp | 
							⊢ Fun  ◡ (  I   ↾  𝐴 )  | 
						
						
							| 17 | 
							
								
							 | 
							df-f1 | 
							⊢ ( (  I   ↾  𝐴 ) : 𝐴 –1-1→ 𝐵  ↔  ( (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐵  ∧  Fun  ◡ (  I   ↾  𝐴 ) ) )  | 
						
						
							| 18 | 
							
								10 16 17
							 | 
							sylanblrc | 
							⊢ ( 𝐴  ⊆  𝐵  →  (  I   ↾  𝐴 ) : 𝐴 –1-1→ 𝐵 )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑉 )  →  (  I   ↾  𝐴 ) : 𝐴 –1-1→ 𝐵 )  | 
						
						
							| 20 | 
							
								
							 | 
							f1dom2g | 
							⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝑉  ∧  (  I   ↾  𝐴 ) : 𝐴 –1-1→ 𝐵 )  →  𝐴  ≼  𝐵 )  | 
						
						
							| 21 | 
							
								1 2 19 20
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑉 )  →  𝐴  ≼  𝐵 )  | 
						
						
							| 22 | 
							
								21
							 | 
							expcom | 
							⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  ⊆  𝐵  →  𝐴  ≼  𝐵 ) )  |