Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1oi
Metamath Proof Explorer
Description: A restriction of the identity relation is a one-to-one onto function.
(Contributed by NM , 30-Apr-1998) (Proof shortened by Andrew Salmon , 22-Oct-2011)
Ref
Expression
Assertion
f1oi
⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1 -onto → 𝐴
Proof
Step
Hyp
Ref
Expression
1
fnresi
⊢ ( I ↾ 𝐴 ) Fn 𝐴
2
cnvresid
⊢ ◡ ( I ↾ 𝐴 ) = ( I ↾ 𝐴 )
3
2
fneq1i
⊢ ( ◡ ( I ↾ 𝐴 ) Fn 𝐴 ↔ ( I ↾ 𝐴 ) Fn 𝐴 )
4
1 3
mpbir
⊢ ◡ ( I ↾ 𝐴 ) Fn 𝐴
5
dff1o4
⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1 -onto → 𝐴 ↔ ( ( I ↾ 𝐴 ) Fn 𝐴 ∧ ◡ ( I ↾ 𝐴 ) Fn 𝐴 ) )
6
1 4 5
mpbir2an
⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1 -onto → 𝐴