Metamath Proof Explorer
		
		
		
		Description:  Syllogism inference combined with a biconditional.  (Contributed by BJ, 25-Apr-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sylanblrc.1 | ⊢ ( 𝜑  →  𝜓 ) | 
					
						|  |  | sylanblrc.2 | ⊢ 𝜒 | 
					
						|  |  | sylanblrc.3 | ⊢ ( 𝜃  ↔  ( 𝜓  ∧  𝜒 ) ) | 
				
					|  | Assertion | sylanblrc | ⊢  ( 𝜑  →  𝜃 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylanblrc.1 | ⊢ ( 𝜑  →  𝜓 ) | 
						
							| 2 |  | sylanblrc.2 | ⊢ 𝜒 | 
						
							| 3 |  | sylanblrc.3 | ⊢ ( 𝜃  ↔  ( 𝜓  ∧  𝜒 ) ) | 
						
							| 4 | 2 | a1i | ⊢ ( 𝜑  →  𝜒 ) | 
						
							| 5 | 1 4 3 | sylanbrc | ⊢ ( 𝜑  →  𝜃 ) |