Metamath Proof Explorer


Theorem fss

Description: Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fss F:ABBCF:AC

Proof

Step Hyp Ref Expression
1 sstr2 ranFBBCranFC
2 1 com12 BCranFBranFC
3 2 anim2d BCFFnAranFBFFnAranFC
4 df-f F:ABFFnAranFB
5 df-f F:ACFFnAranFC
6 3 4 5 3imtr4g BCF:ABF:AC
7 6 impcom F:ABBCF:AC