Description: An onto function implies dominance of domain over range, for finite sets. Unlike fodom for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006) (Proof shortened by Mario Carneiro, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | fodomfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foima | |
|
2 | 1 | adantl | |
3 | imaeq2 | |
|
4 | ima0 | |
|
5 | 3 4 | eqtrdi | |
6 | id | |
|
7 | 5 6 | breq12d | |
8 | 7 | imbi2d | |
9 | imaeq2 | |
|
10 | id | |
|
11 | 9 10 | breq12d | |
12 | 11 | imbi2d | |
13 | imaeq2 | |
|
14 | id | |
|
15 | 13 14 | breq12d | |
16 | 15 | imbi2d | |
17 | imaeq2 | |
|
18 | id | |
|
19 | 17 18 | breq12d | |
20 | 19 | imbi2d | |
21 | 0ex | |
|
22 | 21 | 0dom | |
23 | 22 | a1i | |
24 | fnfun | |
|
25 | 24 | ad2antrl | |
26 | funressn | |
|
27 | rnss | |
|
28 | 25 26 27 | 3syl | |
29 | df-ima | |
|
30 | vex | |
|
31 | 30 | rnsnop | |
32 | 31 | eqcomi | |
33 | 28 29 32 | 3sstr4g | |
34 | snex | |
|
35 | ssexg | |
|
36 | 33 34 35 | sylancl | |
37 | fvi | |
|
38 | 36 37 | syl | |
39 | 38 | uneq2d | |
40 | imaundi | |
|
41 | 39 40 | eqtr4di | |
42 | simprr | |
|
43 | ssdomg | |
|
44 | 34 33 43 | mpsyl | |
45 | fvex | |
|
46 | 45 | ensn1 | |
47 | 30 | ensn1 | |
48 | 46 47 | entr4i | |
49 | domentr | |
|
50 | 44 48 49 | sylancl | |
51 | 38 50 | eqbrtrd | |
52 | simplr | |
|
53 | disjsn | |
|
54 | 52 53 | sylibr | |
55 | undom | |
|
56 | 42 51 54 55 | syl21anc | |
57 | 41 56 | eqbrtrrd | |
58 | 57 | exp32 | |
59 | 58 | a2d | |
60 | 8 12 16 20 23 59 | findcard2s | |
61 | fofn | |
|
62 | 60 61 | impel | |
63 | 2 62 | eqbrtrrd | |