Metamath Proof Explorer


Theorem fodomfi

Description: An onto function implies dominance of domain over range, for finite sets. Unlike fodom for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006) (Proof shortened by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion fodomfi AFinF:AontoBBA

Proof

Step Hyp Ref Expression
1 foima F:AontoBFA=B
2 1 adantl AFinF:AontoBFA=B
3 imaeq2 x=Fx=F
4 ima0 F=
5 3 4 eqtrdi x=Fx=
6 id x=x=
7 5 6 breq12d x=Fxx
8 7 imbi2d x=FFnAFxxFFnA
9 imaeq2 x=yFx=Fy
10 id x=yx=y
11 9 10 breq12d x=yFxxFyy
12 11 imbi2d x=yFFnAFxxFFnAFyy
13 imaeq2 x=yzFx=Fyz
14 id x=yzx=yz
15 13 14 breq12d x=yzFxxFyzyz
16 15 imbi2d x=yzFFnAFxxFFnAFyzyz
17 imaeq2 x=AFx=FA
18 id x=Ax=A
19 17 18 breq12d x=AFxxFAA
20 19 imbi2d x=AFFnAFxxFFnAFAA
21 0ex V
22 21 0dom
23 22 a1i FFnA
24 fnfun FFnAFunF
25 24 ad2antrl yFin¬zyFFnAFyyFunF
26 funressn FunFFzzFz
27 rnss FzzFzranFzranzFz
28 25 26 27 3syl yFin¬zyFFnAFyyranFzranzFz
29 df-ima Fz=ranFz
30 vex zV
31 30 rnsnop ranzFz=Fz
32 31 eqcomi Fz=ranzFz
33 28 29 32 3sstr4g yFin¬zyFFnAFyyFzFz
34 snex FzV
35 ssexg FzFzFzVFzV
36 33 34 35 sylancl yFin¬zyFFnAFyyFzV
37 fvi FzVIFz=Fz
38 36 37 syl yFin¬zyFFnAFyyIFz=Fz
39 38 uneq2d yFin¬zyFFnAFyyFyIFz=FyFz
40 imaundi Fyz=FyFz
41 39 40 eqtr4di yFin¬zyFFnAFyyFyIFz=Fyz
42 simprr yFin¬zyFFnAFyyFyy
43 ssdomg FzVFzFzFzFz
44 34 33 43 mpsyl yFin¬zyFFnAFyyFzFz
45 fvex FzV
46 45 ensn1 Fz1𝑜
47 30 ensn1 z1𝑜
48 46 47 entr4i Fzz
49 domentr FzFzFzzFzz
50 44 48 49 sylancl yFin¬zyFFnAFyyFzz
51 38 50 eqbrtrd yFin¬zyFFnAFyyIFzz
52 simplr yFin¬zyFFnAFyy¬zy
53 disjsn yz=¬zy
54 52 53 sylibr yFin¬zyFFnAFyyyz=
55 undom FyyIFzzyz=FyIFzyz
56 42 51 54 55 syl21anc yFin¬zyFFnAFyyFyIFzyz
57 41 56 eqbrtrrd yFin¬zyFFnAFyyFyzyz
58 57 exp32 yFin¬zyFFnAFyyFyzyz
59 58 a2d yFin¬zyFFnAFyyFFnAFyzyz
60 8 12 16 20 23 59 findcard2s AFinFFnAFAA
61 fofn F:AontoBFFnA
62 60 61 impel AFinF:AontoBFAA
63 2 62 eqbrtrrd AFinF:AontoBBA