Metamath Proof Explorer


Theorem undom

Description: Dominance law for union. Proposition 4.24(a) of Mendelson p. 257. (Contributed by NM, 3-Sep-2004) (Revised by Mario Carneiro, 26-Apr-2015) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024)

Ref Expression
Assertion undom ABCDBD=ACBD

Proof

Step Hyp Ref Expression
1 undif2 ACA=AC
2 reldom Rel
3 2 brrelex2i ABBV
4 2 brrelex2i CDDV
5 unexg BVDVBDV
6 3 4 5 syl2an ABCDBDV
7 6 adantr ABCDBD=BDV
8 brdomi ABxx:A1-1B
9 brdomi CDyy:C1-1D
10 exdistrv xyx:A1-1By:C1-1Dxx:A1-1Byy:C1-1D
11 disjdif ACA=
12 difss CAC
13 f1ssres y:C1-1DCACyCA:CA1-1D
14 12 13 mpan2 y:C1-1DyCA:CA1-1D
15 f1un x:A1-1ByCA:CA1-1DACA=BD=xyCA:ACA1-1BD
16 14 15 sylanl2 x:A1-1By:C1-1DACA=BD=xyCA:ACA1-1BD
17 11 16 mpanr1 x:A1-1By:C1-1DBD=xyCA:ACA1-1BD
18 vex xV
19 vex yV
20 19 resex yCAV
21 18 20 unex xyCAV
22 f1dom3g xyCAVBDVxyCA:ACA1-1BDACABD
23 21 22 mp3an1 BDVxyCA:ACA1-1BDACABD
24 23 expcom xyCA:ACA1-1BDBDVACABD
25 17 24 syl x:A1-1By:C1-1DBD=BDVACABD
26 25 ex x:A1-1By:C1-1DBD=BDVACABD
27 26 exlimivv xyx:A1-1By:C1-1DBD=BDVACABD
28 10 27 sylbir xx:A1-1Byy:C1-1DBD=BDVACABD
29 8 9 28 syl2an ABCDBD=BDVACABD
30 29 imp ABCDBD=BDVACABD
31 7 30 mpd ABCDBD=ACABD
32 1 31 eqbrtrrid ABCDBD=ACBD